



# Nutrition in liver failure

#### Zeinab Nikniaz Associate professor of nutrition Liver and gastrointestinal diseases research center Tabriz University of medical sciences

### Liver

#### The liver is the main metabolic organ in the body.

- Production of protein building blocks (amino acids), proteins (e.g. clotting factors, albumin), cholesterol and bile acids
- Regulation of the blood sugar level by production or use of glucose
- Production and supply of bile for digestion of fats
- The neutralization and elimination of waste products of the body's own metabolism and foreign substances such as drugs and environmental toxins
- Storage of nutrients (glycogen and sugar reserves), minerals (e.g. iron), or vitamins (e.g. vitamin B12)

# Liver disease

| Viral Hepatitis                 | Disease     | Cirrhosis Deaths, Men | Cirrhosis Deaths, Women |
|---------------------------------|-------------|-----------------------|-------------------------|
| NASH/NAFLD                      | Hepatitis B | 31.5%                 | 24.0%                   |
| Cryptogenic hepatitis           | Hepatitis C | 25.5%                 | 26.7%                   |
| Autoimmune hepatitis            | ALD         | 27.3%                 | 20.6%                   |
| Wilson's disease                | NASH/NAFLD  | 7.7%                  | 11.3%                   |
| alpha-1 anti-trypsin deficiency | Other*      | 8%                    | 17.3%                   |
| hemochromatosis                 |             |                       |                         |

\* Including cryptogenic, autoimmune, Wilson's disease, alpha-1 anti-trypsin deficiency, and hemochromatosis.

# Malnutrition in hepatic failure

- Malnutrition is recognizable in all forms of cirrhosis
- prevalence of malnutrition in cirrhosis has been estimated to range from 65%-100%

Metabolic alterations leading to malnutrition in end-stage liver failure.

| Protein                                 | Carbohydrate                         | Fat                     |
|-----------------------------------------|--------------------------------------|-------------------------|
| (i) Increased catabolism (ii) Increased | (i) Decreased hepatic and skeletal   | (i) Increased lipolysis |
| utilization of BCAAs (iii) Decreased    | muscle glycogen synthesis            | (ii) Enhanced turnover  |
| ureagenesis                             | (ii) Increased gluconeogenesis (iii) | and oxidation of fatty  |
|                                         | Glucose intolerance and insulin      | acids                   |
|                                         | resistance                           | (iii) Increased         |
|                                         |                                      | Ketogenesis             |



# 1. What is first line of nutrition evaluation in patient with hepatic failure?

### Nutrition assessment

- **Royal Free Hospital-Nutritional Prioritizing Tool anthropometric measurements** 
  - (height, weight, mid-arm circumference, triceps skin fold thickness, and biceps skinfold thickness)
- Functional testing using hand-grip strength
  - to assess muscle strength has been shown to have the highest accuracy for detecting nutritional compromise in chronic liver disease
- Assessment of sacropenia
- biochemical measurements
  - (hemoglobin, albumin, white blood cell count, retinol-binding protein, transferrin, liver function tests, glucose, cholesterol, urea nitrogen, C-reactive protein, pre-albumin, nitrogen balance, creatinine, sodium, magnesium, zinc, potassium, and others)

- Royal free hospital nutrition prioritizing tool
  - Developed to assess malnutrition in liver disease
  - More sensitive than NRS-2000 tool



# hand-grip strength

Handgrip strength is a good predictor of the rate of complications within the next year

|       | MALE  |           |        | FEMALE      |           |        |
|-------|-------|-----------|--------|-------------|-----------|--------|
| AUE   | Reak  | Normal    | Strong | <b>Beak</b> | Normal    | Strong |
| 10-11 | (12.6 | 12.6-22.4 | >22.4  | (11.8       | 11.8-21.6 | >21.6  |
| 12-13 | (19.4 | 19.4-31.2 | >31.2  | (14.6       | 14.6-24.4 | >24.4  |
| 14-15 | (28.5 | 28.5-44.3 | 344.3  | (15.5       | 15.5-27.3 | >27.3  |
| 16-17 | (32.6 | 32.6-52.4 | >52.4  | (17.2       | 17.2-29.0 | >29.0  |
| 18-19 | (35.7 | 35.7-55.5 | >55.5  | (19.2       | 19.2-31.0 | >31.0  |
| 20-24 | (36.8 | 36.8-56.6 | >56.6  | @1.5        | 21.5-35.3 | >35.3  |
| 25-29 | (37.7 | 37.7-57.5 | >57.5  | (25.8       | 25.6-41.4 | 241.4  |
| 30-34 | (36.0 | 36.0-55.8 | >55.8  | Q1.5        | 21.5-35.3 | >35.3  |
| 35-39 | (35.8 | 35.8-55.6 | >55.6  | (20.3       | 20.3-34.1 | 334.1  |
| 40-44 | (35.5 | 35.5-55.3 | >55.3  | (18.9       | 18.9-32.7 | >32.7  |
| 45-49 | 04.7  | 34.7-54.5 | >54.5  | <18.6       | 18.6-32.4 | >32.4  |
| 50-54 | (32.9 | 32.9-50.7 | >50.7  | <18.1       | 18.1-31.9 | >31.9  |
| 55-59 | <30.7 | 30.7-48.5 | >48.5  | (17.7       | 17.7-31.5 | >31.5  |
| 60-64 | (30.2 | 30.2-48.0 | >48.0  | (17.2       | 17.2-31.0 | 231.0  |
| 65-69 | (28.2 | 28.2-44.0 | >44.0  | (15.4       | 15.4-27.2 | >27.2  |
| 70-99 | (21.3 | 21.3-35.1 | 235,1  | (14,7       | 14.7-24.5 | >24.5  |

### Sarcopenia assessment

#### Loss of muscle mass

assessed by radiologic methods

Tests of muscle function

Assessed by exercise tests

► 6-min walk distance

# 2. How we interpret or calculate BMI when the patient has ascetic?

## Nutrition assessment

- Given that edema and ascites can falsely elevate the BMI, corrective measures have been developed to subtract
  - ► 5% mild ascites
  - ► 10% moderate ascites
  - ► 15% \_\_\_\_\_ severe ascites
  - of the measured weight
- **with an additional <u>five percent</u> subtracted for pedal edema**

- A state of malnutrition in cirrhosis has also been defined as a
  - **BMI**  $\leq$  22 kg/m2 with no ascites
  - $\ge$  23 kg/m2 with mild ascites
  - $\ge 25$  kg/m2 with tense ascites

# Does energy requirement of cirrhotic patients differ from healthy people?



# Energy requirement in these patients increased Prevent body protein breakdown

Prevent ammonia increase

# Energy requirement:

- 25 to 35 calories per kilogram of corrected body weight (total energy supply of 1.3 x REE)
  - 20 calories per kilogram for obese patients
  - 40 calories per kilogram for underweight patients

# **Prevent starvation**

frequent feeding (3-5 meal/day)

- prevent accelerated starvation and proteolysis
- Iongest inter-meal duration is at night
  - The adoption of a breakfast containing some proteins
  - late evening snack
  - Using nocturnal ONS

# **Energy supplementation:**

Maltodextrin 19

**Butter, margarine or oil** 

Artificial foods (liquid diet/tube feeding)

# 3. Should we restrict the protein consumption in patient with hepatic failure?

# Protein

- Following protein intakes is recommended:
  - 1.2 g of protein per kg body weight each day in compensated liver cirrhosis
  - 1.5 g of protein per kg body weight each day in decompensated liver cirrhosis and malnutrition

Small frequent meals not only provide additional calories but also prevent gluconeogenesis and wasting of muscle.

# 4. what about protein quality?

# Protein quality

|                                               |                                          | Poor tolerance                 |
|-----------------------------------------------|------------------------------------------|--------------------------------|
| BCAA                                          | AAA                                      | Aromatic amino ac              |
| Metabolism                                    | Metabolism                               | (1000)                         |
| <ul> <li>independent of</li> </ul>            | <ul> <li>dependent on</li> </ul>         | Blood                          |
| liver function                                | liver function                           |                                |
| <ul> <li>predominantly in the</li> </ul>      | <ul> <li>predominantly in the</li> </ul> | Meat/sausage                   |
| musculature                                   | liver                                    |                                |
| <ul> <li>useful for detoxification</li> </ul> | n                                        | Fish/egg                       |
|                                               |                                          | Milk/dairy product             |
| Blood level reduced                           | Blood level increased                    |                                |
| in cirrhosis                                  | in cirrhosis                             | Vegetable protein              |
| Useful in                                     | Unfavorable in                           |                                |
| encephalopathy                                | encephalopathy                           | Branched-chain amino<br>(BCAA) |
|                                               |                                          | Good tolerance                 |
|                                               |                                          |                                |

#### patients take 0.2 g of BCAA per kg body weight each day

acids

When BCAA are prescribed, they are included in the daily protein intake.

# 5. when we should restrict protein recommendation?

#### when we should restrict protein recommendation?

True dietary protein intolerance is rare except in fulminant hepatic failure, or in a rare patient with chronic endogenous hepatic encephalopathy

# 6. What is your recommendation if patient has steatorrhea?

# Fats

- most energy rich foodstuff
- does not increase toxic levels of ammonia
- **•** The intake of animal fats should not be too high and the intake of vegetable fats should not be too low.

- **In steatorrhea, special fat (MCT-fat) can be used.** 
  - MCT fats can be absorbed in the bowel even in the absence of bile acids and reach the body as a source of energy.
  - MCT-fats do not naturally occur in foods.
  - MCT fats must be administered using a phased increase in dose.
  - **If steatorrhea is present, the diet must be low in fat and the intake of fat must largely take the form of MCT fats.**

# 7. how much sodium do you recommend for patient with hepatic failure?

## Sodium

**b** sodium recommendation for patients with cirrhosis: 2000 mg/day

All patients with cirrhosis should, as a rule, be advised to use less salt in order to inhibit the development of ascites or edema.

▶ It is better to restrict the table salt to 1/6 tea spoon

# high sodium foods

High sodium foods

|      | sodiu                  | um content |
|------|------------------------|------------|
| 00 g | Emmental cheese        | 450 mg     |
| 00 g | hard cheese            | 1520 mg    |
| 00 g | mayonnaise             | 702 mg     |
| 00 g | caviar                 | 1940 mg    |
| 00 g | Matjes (young) herring | 2500 mg    |
| 00 g | pickled herring        | 5930 mg    |
| 00 g | corned beef            | 833 mg     |
| 00 g | cervelat sausage       | 1260 mg    |
| 00 g | bacon                  | 1770 mg    |
| 00 g | mustard                | 1307 mg    |

# Herbs instead of salt

▶ In order to make your food tasty, liberal use of herbs and spices is recommended.

- ▶ garlic
- ► Leeks, celery
- **onions**
- ▶ tomatoes
- **Iow sodium sauces**
- Wholegrain products have a more intense taste than products made with white flour

# potassium

Salt substitutes generally contain potassium

improvement in taste,

A potassium-rich diet is particularly important for patients who take diuretics to get rid of fluid, as potassium deficiency can otherwise occur.

rich potassium foods:

All types of vegetables (particularly cabbage, potatoes, herbs, tomatoes, spinach, tomato pulp, mushrooms and chanterelles)

Fruit (particularly avocado, apricots, bananas, fruit juices and dried fruit)

# 8. how much fluid do you recommend for patient with hepatic failure?



# A restriction in the amount of fluid drunk: 500– 1000 ml

# **blood sodium**





# Drink fluids based on the patient's thirst

# 9.what supplements do you recommend for patient with hepatic failure?

# **Micronutrient deficiencies**

- Fat-soluble vitamin deficiencies (vitamins A, D, E and K) are common, especially in patients with due to malabsorption, decreased intake, and reduced production of carrier proteins
  - ► All patients should take 2,000 IU of vitamin D daily, with deficient patients requiring 50,000 IU weekly for 8-12 weeks, with a target 25-hydroxyvitamin D level ≥ 30 ng/mL
  - > Patients may also be deficient in water-soluble vitamins, including B group vitamins

Zinc and magnesium deficiencies are also common

Supplementation with 150-175 mg/day can lower ammonia levels when used as monotherapy or when combined with vitamin A, C, and E supplementation.

• A daily multivitamin with minerals can address most of these deficiencies

**Other supplements** 

probiotics
 effect on intestinal pH
 Reduced ammonia production

